Double Sequence

1540t Can Convert

Given two string S and T, determine if S can be changed to T by deleting some letters (including 0 letter)

  • Statement: 從s前i個組成的string是否可以轉成t前j個組成的string

  • Func: if s[i] == t[j] -> dp[i][j] |= dp[i-1][j-1], else dp[i][j] |= dp[i-1][j];

 public boolean canConvert(String s, String t) {
    if(s == null || t == null || s.length() == 0) return false;
    int m = s.length();
    int n = t.length();

    boolean[][] dp = new boolean[m+1][n+1];

    for(int i=0; i<=m; i++){
        dp[i][0] = true;
    }

    for(int i=1; i<=m; i++){
        for(int j=1; j<=n; j++){           
            if(s.charAt(i-1) == t.charAt(j-1)) dp[i][j] |= dp[i-1][j-1];                   
                         // delete
            else dp[i][j] |= dp[i-1][j];
        }
    }

    return dp[m][n];
}

Distinct Subsequences

Given a string S and a string T, count the number of distinct subsequences of T in S.

Example Given S = "rabbbit", T = "rabbit", return 3.

  • State: f[i][j]表示S中前i個子串可以選出T前j個子串的個數

  • Func: f[i][j] = f[i-1][j-1]+f[i-1][j] if S[i-1]==T[j-1]

    else f[i][j] = f[i-1][j]

  • Init: f[i][0] = 1, f[0][j] = 0

97. InterLeaving String

Given three strings: s1, s2, s3, determine whether s3 is formed by the interleaving of s1 and s2.

  • State: f[i][j]表示s1前i個字符和s2前j個字符可以組成s3前i+j個字符

  • Func: f[i-1][j] && s1[i-1]==s3[i+j-1] ||

    f[i][j-1] && s2[j-1]==s3[i+j-1]

  • Init: f[i][0] = s1[0...i-1] = s3[0...i-1], f[0][j] = s2[0...j-1] = s3[0...j-1]

  • Ans: f[m][n]

Last updated

Was this helpful?