Coordinate
63 Unique Path II
Now consider if some obstacles are added to the grids. How many unique paths would there be
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m, n = len(obstacleGrid), len(obstacleGrid[0])
dp = [0] * n
for j in range(n):
if obstacleGrid[0][j] == 1: break
dp[j] = 1
for i in range(1, m):
if obstacleGrid[i][0] == 1:
dp[0] = 0
for j in range(1, n):
dp[j] = dp[j] + dp[j-1] if obstacleGrid[i][j] == 0 else 0
return dp[n-1]
Jump Game
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
"""
DP
Time: O(n^2)
Space: O(n)
"""
def canJump(self, nums: List[int]) -> bool:
n = len(nums)
dp = [False] * n
dp[0] = True
for i in range(n-1):
if dp[i]:
for jump in range(1, nums[i]+1):
if i+jump < n:
dp[i+jump] = True
return dp[-1]
"""
Greedy
Time: O(n)
Space: O(1)
"""
def jump(self, nums: List[int]) -> int:
n = len(nums)
max_pos = nums[0]
for i in range(1, n):
if max_pos < i:
return False
max_pos = max(max_pos, i+nums[i])
return True
Jump game II
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
"""
DP
Time: O(n^2)
Space: O(n)
"""
def jump(self, nums: List[int]) -> int:
n = len(nums)
dp = [float('inf')] * n
dp[0] = 0
for i in range(n-1):
if i == 0 or dp[i] != float('inf'):
for jump in range(1, nums[i]+1):
if i+jump < n:
dp[i+jump] = min(dp[i+jump], 1 + dp[i])
return dp[-1] if dp[-1] != float('inf') else 0
"""
Greedy
Time: O(n)
Space: O(1)
"""
def jump(self, nums: List[int]) -> int:
n = len(nums)
if n <= 1: return 0
# max position reachable from index 0
pos_max = nums[0]
# max position reachable from current jump
cur_max = nums[0]
count = 1
for i in range(1, n):
if cur_max < i:
count += 1
cur_max = pos_max
pos_max = max(pos_max, i + nums[i])
return count
Magicl Vowel
A magical sub-sequence of a string S is a sub-sequence of S that contains all five vowels in order. Find the length of largest magical sub-sequence of a string S. For example, if S = aeeiooua, then aeiou and aeeioou are magical sub-sequences but aeio and aeeioua are not.
State: S到index i, char到index j目前longest voewl string number
Func: dp[i][j] = if(s[i]==c[j]) max(dp[i-1][j], dp[i][j-1]) + 1, else max(dp[i-1][j], dp[i][j-1])
Ans: dp[m][n] must >= char length, otherwise return 0;
static int longestSubsequence(String s){
char[] chars = new char[] {'a','e','i'};
char[] stringArr = s.toCharArray();
int m = stringArr.length;
int n = chars.length;
int[][] dp = new int[m][n];
// init
if(chars[0] == stringArr[0]) dp[0][0] = 1;
for(int i=1; i<m; i++) {
for (int j = 1; j < n; j++) {
if (stringArr[i] == chars[j]) {
dp[i][j] = 1 + Math.max(dp[i - 1][j], dp[i][j - 1]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
// answer must be as least greater or equal than char length
return dp[m-1][n-1] < n ? 0 : dp[m-1][n-1];
}
public static void main(String[] args) {
String s1 = "aie";
String s2 = "aaeeie";
String s3 = "iaeaaeiiae";
String s4 = "eaei";
System.out.println(longestSubsequence(s1));
System.out.println(longestSubsequence(s2));
System.out.println(longestSubsequence(s3));
System.out.println(longestSubsequence(s4));
}
Last updated
Was this helpful?